A Comparative Study of Empirical Mode Decomposition-Based Filtering for Impact Signal

نویسندگان

  • Liwei Zhan
  • Chengwei Li
چکیده

Abstract: The Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) has been used to propose a new method for filtering time series originating from nonlinear systems. The filtering method is based on fuzzy entropy and a new waveform. A new waveform is defined wherein Intrinsic Mode Functions (IMFs)—which are obtained by CEEMDAN algorithm—are firstly sorted in ascending order (the sorted IMFs is symmetric about center point, because at any point, the mean value of the envelope line defined by the local maxima and the local minima is zero), and the energy of the sorted IMFs are calculated, respectively. Finally, the new waveform with axial symmetry can be obtained. The complexity of the new waveform can be quantified by fuzzy entropy. The relevant modes (noisy signal modes and useful signal modes) can be identified by the difference between the fuzzy entropy of the new waveform and the next adjacent new waveform. To evaluate the filter performance, CEEMDAN and sample entropy, Ensemble Empirical Mode Decomposition (EEMD) and fuzzy entropy, and EEMD and sample entropy were used to filter the synthesizing signals with various levels of input signal-to-noise ratio (SNRin). In particular, this approach is successful in filtering impact signal. The results of the filtering are evaluated by a de-trended fluctuation analysis (DFA) algorithm, revised mean square error (RMSE), and revised signal-to-noise ratio (RSNR), respectively. The filtering results of simulated and impact signal show that the filtering method based on CEEMDAN and fuzzy entropy outperforms other signal filtering methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Empirical Mode Decomposition based Adaptive Filtering for Orthogonal Frequency Division Multiplexing Channel Estimation

This paper presents an empirical mode decomposition (EMD) based adaptive filter (AF) for channel estimation in OFDM system.  In this method, length of channel impulse response (CIR) is first approximated using Akaike information criterion (AIC). Then, CIR is estimated using adaptive filter with EMD decomposed IMF of the received OFDM symbol. The correlation and kurtosis measures are used to sel...

متن کامل

A Fault Diagnosis Method for Automaton based on Morphological Component Analysis and Ensemble Empirical Mode Decomposition

In the fault diagnosis of automaton, the vibration signal presents non-stationary and non-periodic, which make it difficult to extract the fault features. To solve this problem, an automaton fault diagnosis method based on morphological component analysis (MCA) and ensemble empirical mode decomposition (EEMD) was proposed. Based on the advantages of the morphological component analysis method i...

متن کامل

A Fault Diagnosis Method for Automaton Based on Morphological Component Analysis and Ensemble Empirical Mode Decomposition

In the fault diagnosis of automaton, the vibration signal presents non-stationary and non-periodic, which make it difficult to extract the fault features. To solve this problem, an automaton fault diagnosis method based on morphological component analysis (MCA) and ensemble empirical mode decomposition (EEMD) was proposed. Based on the advantages of the morphological component analysis method i...

متن کامل

Combination of Empirical Mode Decomposition Components of HRV Signals for Discriminating Emotional States

Introduction Automatic human emotion recognition is one of the most interesting topics in the field of affective computing. However, development of a reliable approach with a reasonable recognition rate is a challenging task. The main objective of the present study was to propose a robust method for discrimination of emotional responses thorough examination of heart rate variability (HRV). In t...

متن کامل

Comparative Analysis of Wavelet-based Feature Extraction for Intramuscular EMG Signal Decomposition

Background: Electromyographic (EMG) signal decomposition is the process by which an EMG signal is decomposed into its constituent motor unit potential trains (MUPTs). A major step in EMG decomposition is feature extraction in which each detected motor unit potential (MUP) is represented by a feature vector. As with any other pattern recognition system, feature extraction has a significant impac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Entropy

دوره 19  شماره 

صفحات  -

تاریخ انتشار 2017